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Abstract: San Francisco Bay and its watersheds are polluted by legacy polychlorinated biphenvls (PCBs), resulting in the establishmentof a
total maximum daily load (TDML) that requires a 90% PCB load reduction from mumnicipal stormwater. Green infrastructure (GI) is a mula-
benefit solution for stormwater management, potentially addressing the TMDL objectives, but planning and implementing GI cost-effectively
to achieve management goals remains a challenge and requires an integrated watershed approach. This study used the nondominated soting
genetic algorithm (NSGA-I) coupled with the Stormwater Management Model (SWMM) to find near-optimal combinations of Gls that
maximize PCB load reduction and minirmize total relative cost at a watershed scale. The selection and placement of three locally favored

Gl types (bioretention, infiltration trench, and permeable pavement) were analyzed based on their cost and effectiveness. The results show that
between optimal solutions and nonoptimal solutions, the effectiveness in load reduction could vary as much as 30% and the difference in total
relative cost could be well over $100 million. Sensitivity analysis of both GI costs and sizing criteria suggest that the assumptions made
regarding these parameters greatly influenced the optimal solutions. BOE: 18,1863/ J5WBAY. 0080876, © 2018 American Society of Civil

Engineers.

introduction

wWater quality in the San Francisco Bay and its watershed is de-
graded by polychlorinated biphenyls (PCBs), mercury (Hg), pesti-
cides, and a number of other pollutants associated with stormwater
munoff (Gilbreath and McKee 2015; McKee and Gilbreath 20135;
McKee et al. 2017). PCBs are of particular concern because they
are oxic, persist in the environment, and accumulate in the tissue
of fish, wildlife, and humans, causing a variety of adverse health
effects (Davis ot al. 2007). Much of the PCB pollution in the San
Francisco Bay watersheds happened decades ago, before the poten-
tial health and environmental effects of PCBs were widely known,
but the legacy of past use is still found in polluted patches across the
urban landscape, mixed into the sediment of the Bay, and contami-
nating the Bay food web (Davis et al. 2007).

Urban runoff is a significant pathway for PCB entry into the
Bay. PCBs are transported to the Bay mainly in particulate form
in surface water (Gilbreath and McKee 2015; McKee et al. 2017
The main sources to urban runoff inclode contaminated sediment
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and water derived from older industrial and manufacturing arcas
where PCBs were used in electrical equipment, plasticizers, hy-
draulic oils and lubricants, heat transfer, and petrolenm additives
prior to bans in the late 1970s (Erickson and Kaley 2011). Addi-
tonal sources to urban runoff include runoff from illicit waste
dumping and remodeling and demolition sites where there are
PCB residues in waste-containing caulk (Klosterhaus et al. 2014).
Collective urban runoff loads to the Bay from these sources and
pathways is estimated to be >135 kg annoally (Davis et al. 2007).
In response to this persistent problem, the San Francisco Bay
Regional Water Quality Control Board adopted a PCB total maxi-
roum daily load (TMDL) for San Francisco Bay that requires a 90%
PCB load redoction from musicipal stormwater over a 20-year
timeframe to accelerate the recovery of the Bay from decades of
PCB contamination (SFBRWQCE 2007).

Reducing PCBs and other polutants in stormwater runoff is
complex and needs to rely on costly engineering, especially in
highly developed urban environments, where often decades or a
century or more of infrastructure has already shaped the landscape.
Distributed stormwater runofl management using green infrastruc-
ture (G) is emerging as a multibenefit solution that can address
both stormwater quality and quantity concerns (McNett et al. 201 1
David et al. 2015). The removal of PCBs by G115 primarily through
the capture of suspended particles by settling or filtration, as with
other hydropbobic urban pollutants such as beavy metals (David
ot al. 2015). Given the particulate nature of PCBs and observations
for phosphorus and beavy metals including Cu, Pb, and Zn, capture
through filtration and adsorption most likely occurs in the first
30-crn surface layers of the engineered soil media within bioreten-
tion systems (Dechesne et al. 2005; Li and Davis 2008; Komlos and
Traver 2012). Therefore, even if systems are designed to exfiltrae,
PCBs are unlikely to enter the groundwater system. Groundwater
pathways and leaching to groundwater are accordingly not a
concern.

Consistent with a nationwide irend, stormwater retrofit using
GI 1s specifically identified in the Bay Area stormwater permit,
National Pollutant Discharge Elimination System (INPDES) Permit
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No. CAS612008, as a managemment measure to reduce the loads of
PCBs and other pollutants getting to San Francisco Bay. However,
although these pollution issues are common o all Bay Area mu-
nicipal agencies, widespread implementation of GI is slow and
hindered by a lack of watershed-based planning for efficient GI
retrofit siting and determinations for the most cost-effective man-
agement strategies to achieve desired load reductions in compliance
with the permit. Therefore, there is a need for a holistic approach
that can facilitate the identification of optimal GI solutions based
on their potential effectiveness in reducing stormwater runoff and
pollutant loads.

Optimal selection and placement of traditional Best Manage-
ment Practices (BMPs) for watershed-scale management of storm-
water pollutants has been the subject of many previous studies
(Bekele and Nicklow 2005; Perez-Pedini ot al. 2005; Arabi et al.
2006; Maringanti et al. 2009, 2011; Rodriguer et al. 201 1; Ahmadi
et al. 2013). These studies employed a well-established, integrative
framework that combines a watershed model with a multiobjective
optimization algorithm to identify cost-effective solutions among
numerous and complex alternatives. Bekele and Nicklow (2008)
used an evolutionary algorithm coupled with the Soil and Water
Assessment Tool (SWAT) to determine the trade-off among multi-
ple ecosystem service objectives and economic goals associated
with agricultural comimodity production. Perez-Pedini ef al. (2003)
combined an eveni-based, distributed hydrologic model with a ge-
netic algorithm to explore the optimal location of infiliration-based
BMPs for stormflow peak reduction. Arabi et al. (2006) compared
two approaches to developing nonpoint source pollution manage-
ment plans and found that reduction of sediment, phosphorus, and
nitrogen loads could be achieved more cost effectively by optimiz-
ing BMPs using SWAT and genetic algorithm, rather than relying
on a traditional approach targeting critical source areas. In a similar
fashion, Maringanti et al. (2009, 2011), Rodriguez et al. (2011),
and Abmadi e al (2013) all applied a muliiobjective genetic
algorithm [nondominated sorting genetic algorithm (NSGA-11}]
in combination with SWAT to provide trade-off curves (optimal
fronts) between ponpoint source pollutant reduction and cost at
the watershed scale. These studies generally considered reductions
in nutrients and sediment in agricultural watersheds or low-density
uwrban areas. However, highly urbanized catchments present a Jdif-
ferent set of problems than agricultural areas with different pollu-
tants and severely limited space available for retrofitting due to the
existing development. For example, in the dense older development
areas around San Francisco Bay, PCBs are the focus pollutants
(avis et al. 2007) but there is limited space and uncertainty on
which types of GI may be applicable and cost effective.

In recent years, the selection and placement of Gl in urban
watersheds has gotten some wraction, but the number of studies
remain scarce. Zare ot al. (2012} developed the multiobjective op-
timization of wrban runoff quality and quantity control using
NSGA-II and the Storm Water Management Model (SWMM) in
an urban watershed, with a mixed GI types (rain bairel, porous
pavement area, bioretention) and different land-use areas as deci-
ston variables, Giacomoni (2015) and Zhang et al. (2013) both used
SWMM and multiobjective optimization to identify the near-
optimal trade-off between the total low-impact development costs
and runoff reduction in urbanized watersheds. These recent studies
on urban watersheds were largely focused on stormwater runoff
control, and developing (1 strategies for controlling urban pollu-
tants are currently lagging. Furthermore, to our knowledge, no such
studies have been done on PCBs, but given the very heterogeneous
distribution of PCBs in the landscape (Gilbreath and McKee 20153,
these chemicals may be representative of a class of contaminants
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that differ greatly to suspended sediments and nutrients that tend to
be more ubiguitous in the environment and better studied.

To fill in these gaps, the objectives of this study were to (1) de-
velop and demonstrate a holistic approach that can be used to de-
termine optimal selection and placement of Gls for reducing
stormwater pollution in urban watersheds; and (2) provide a useful
demonstration of what can be done in other urban watersheds in
dealing with PCBs and potentially other sediment-bound pollu-
tants. Specifically, this study used NSGA-II coupled with SWMM
to find pear-optimal combinations of Gls that maximize PCB load
reduction and minimize total relative cost. The ocutcomes from this
analysis can be wvsed as a basis to develop watershed-scale GI
master plans to help guide long-term planning and implementation
of GIs for nenpoint source pollution control.

Study Area

The Guadalupe River Watershed is located in the Santa Clara
Valley basin and drains 1o Lower South San Francisco Bay (Fig. 1).
The watershed is the fourth largest in the Bay Area with approx-
imately 414 km? of total drainage area. The Guadalupe Watershed
has a mild Mediterranean-type climate generally characterized by
moist, cool wet winters and warm dry surmmers. Rainfall and ranoff
follows a seasonal pattern with a pronounced wet season that gen-
erally begins in October or November and can last to April or May,
during which a mean of >93% of the annoual rainfall and runoff
occurs (McKee et al. 2017). The primary focus of this study is the
lower part of the watershed that excludes upsiream watersheds and
all areas upstrears from the reservoirs where gange data are avail-
able to define the boundary conditions of the model domain (Fig. 1).

riority Development Areas

an Jose City Boundary

Streams

D Lower Watershed

pper Watershed

SF BavArea

Los Gatos Creek £ 77 EROsaiaBede, 4

Miles
6

Fig. 1. Goadalupe River Watershed and study area. (Map data from
Esri, HERE, Delorme, Mapmyindia, © OpenStreetMap contributors,
and the GIS wser community; City of San Jose; Association of Bay
Area Governments; National FElevation Dataset; and National
Hydrography Dataset.)
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The resulting study area is referred berein as the Lower Guadalupe
River watershed and has an area of 7,531 ha.

GreenPlan-iT

GreenPlan-IT, a planning ool that was designed 1o support the cost-
effective selection and placement of GI in wban watersheds, was
used for this study. GreenPlan-IT comprises a geographic informa-
tion system (GI1S)-based Gl site locator tool, a modeling tool, an
optimization tool, and a Gl implementation tracking and reporting
tool (Wa et al. 2018). For this stady, the first three tools were utilized.

The GIS-based site locator tool was used to identify potential GI
locations that serve as constraints for the optimization tool. The tool
combines the physical properties of different Gl types with regional
and local GIS data and uses these data, through an identification,
rapking, and weighting process, 0 locate potential GI locations
at a watershed scale. The modeling tool, built on the USEPA’S
SWMMS, was used to establish baseline {low and PCB loads and
quantify any reduction made from GI implementation across ditfer-
ent areas within the watershed. Within GreesPlan-1T, the modeling
0ol serves as a subroutine to the optimization tool. During the op-
tmization process, the optinuzation tool will command the mod-
eling tool to evaluate GI performance and pass that information
back. The SWMM was selected because it is a public domain, dy-
namic rainfall-runoff simolation model soited to simulating runoff
quantity and quality from primarily urban areas (Zhang and Guo
2014; Baek et al. 2015; Park et al. 2015). More importantly,
SWMM has the capacity to simulate the hydrologic performance
of seven green infrastructure types (bioretention cell, rain garden,
green roof, infiltration wench, permeable pavement, rain barrel, and
vegetative swale), which makes it possible to link GI performance
1o specific GI designs and Jocations—a key element in the optimi-
zation approach. Since PCB removal by Gl is primarily through
filtration and retaining and infiltrating water volume, the reduction
of PCB load can be estimated as a result of changes in flow, thereby
providing water quality performance of GI options. The optimiza-
tion tool uses NSGA-IT (Deb et al. 2002) to evaluate the benefits
{runoff and pollutant load reductions) and costs associated with
various Gl implementation scenarios (type, location, number)
and identify the most cost-effective options that satisfy user-defined
management goals.

Optimization Algorithm

Belonging to the family of evolutionary optimization techniques,
NSGA-II is among the most efficient and widely used multiobjec-
tive optimization algorithms capable of producing optimal or near-
optimal trade-off solutions among competing objectives (Deb ot al.
2002). NSGA-I incorporates a nondominating sorting approach
that sakes it faster than any other multicbjective algorithm. In
NSGA-I, solutions are sorted on the basis of the degree of domi-
nance within the population and a solution that is not dominated
by any other solution has the highest ranking. In addition, the al-
gorithm employs a crowded-comparison operator to preserve diver-
sity along the Parcto-optimal front so that the entire Pareto-optimal
region is found. Deb et al. (2002) provided a detailed mathematical
description of this algorithm.

NSGA-H has gained popularity in recent years and showed
superiority over other multiobjective evolutionary algorithms in
solving complex environmental optimization problems. A number
of studies employed NSGA-II 1o guide the selection and placement
of best management practices o reduce water goality degradation
(UISEPA 2009; Maringanti et al. 2009, 201 {; Rodriguez et al. 2011
Zare et al. 2012: Abmadi et al. 2013).
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Method

The optimization approach required the establishment of a baseline
condition for the study area and three components as inpuis to the
NSGA-H algorithm to evaluate the objective functions of any given
1 combination. The three inputs were (1} GI physical attributes;
(2} GI costs; and (3) constraints on Gl locations. A two-objective
{cost and PCB load reduction) optimization problem was then for-
mulated that could be solved through the programmatic implemen-
tation of NSGA-IL

Esiablish Baseline Condition

To ensure the establishment of a representative baseline condition
for the study area, the Lower Guadalupe River Watershed was
delineated into 151 subwatersheds, and SWMM was calibrated for
hydrology for the USGS Gauge Station 11169025 near the mouth
of the Guadalupe River (Fig. 1) for 2010-2011. Overall, the hydro-
logic calibration was deemed good, as measured by mean error for
total storm volume of ~4% (<[10%)) and Nash-Sutcliffe model ef-
ficiency (Mash and Sutcliffe 1970) of 0.97 (>0.7), both statistics
well within acceptable criteria.

PCB concentrations were simulated using the water quality
module of SWMM, which employs buildup and wash-off functions
to estimate pollutants associated with stormwater runoff from each
land use. The parameters of pollutant buildup and wash-off func-
tions need to be set through calibration with empirical data. As in
most modeling stodics of this nature, contaminant data tend to be
limited, and only 19 samples were collected for PCB concentra-
tons during winter storms in Water Year 2010 (McKee et al. 2017).
Therefore, a weight-of-evidence approach was used to provide a
reasonable assurance for the PCB sirmulation, in which the param-
eters of pollutant buildup and wash-off functions were {ine tuned to
reflect the difference in PCB loading from each land-use category
described by Mangarella et al. (2010), as well as to ensure the mod-
eled PCB concentrations were within the range of observed data
and the modeled load maiched the observed load for Water Year
2010.

The calibrated SWMM was used to generate flow and PCB
Ioads under a 2-year, 24-h storm of 4.7 cm to serve as the baseline
from which the effectiveness of any GI scenarios were estimated.
Although the model was validated for the Lower Guadalupe River
Watershed, ouly a portion of i, downtown San Jose, California,
was selected for optimization because this 1s a primary focus
area for redevelopment and therefore where future Gl retrofit
and implementation are planned to offset any impacts of planned
new and redevelopment. The selected area covers 33 of the 151
subwatersheds with a total area of 1,740 ha (Fig. 2).

Gi Representation

For the purposes of initial methodology development and refine-
ment, three GI types-—bioretention, infiliration trench, and per-
meable pavement—were selected for inclusion in this study based
on stakeholder imput, stormwater permit requiremients, and an
vaderstanding of practices commonly used in the San Francisco
Bay Area, but additional Gl types have been added in other Bay
Area applications. The primary processes for these three Gl types
are {iltration and infiltration, which helps slow stormwater down
and reduce runoff volumes, remove pollutants, and support stream
baseflow. Key configuration parameters for each Gl feamwre are
suminarized in Table 1. For this study, in order to simplify the op-
tmization process, each GI type was assigned a typical size and
design configuration that remained unchanged during the optimi-
zation process. The decision variables were therefore defined as
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Optimization Focus Area
[ Lower watershed
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Priarity Deveiopment Areas
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Fig. 2. Optimization focus area. (Map data from FEsri, HERE,
Delorme, MapmylIndia, © OpenStreetMap contributors, and the GIS
USer COMmunity. )

Table 1. Gl representation in optimization procedure

Tofiltration  Permeable

Layer Parameter Bioretention trench pavement
Surface Area (m?) 93 46 465
Growing Depth (cm) 45.7 NfA MNIA
media Porosity 0.41
Conductivity 12.7
{crm/hy
Suction head (cm) 6.1
Pavement Thickness {cm) MN/A N/A 10.2
Yoid ratio .18
Permeability 12.7
{cm/h)
Storage Height (cm) 30.5 914 30.5
Void ratio (.54 0.54 0.67
Conductivity 2.5 2.5 2.5
{cm/h)
Underdrain  Drain coefficient 1.3 1.3 13
{cm/h)
Drain exponent 0.5 0.5 8.5

the number of fixed-size units of each GI type. As such, the con-
figuration of each GI will affect its performance and thus how they
are utilized during the optimization process.

Gl Costs

Implementing GI at the landscape scale incurs many costs ranging
from permitting, traffic control, and construction o mainienance
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Table 2. Unit cost for each GI type

Annual
Construction Dresign  operation and  Total cost
Sources {$/m%) (%) maintenance ($/m”)
Bicretention
City of San Jose — 25 $7.0 1,120
SFEP 958-3,197 25 $2.8 1,270-4,682
‘Washington BMP 340 67 $1.3 593
database
Infiltration trench
City of San Jose — 22 $2.9/m w70
Washington BMP — — — 1,033
database
Permeable pavement

City of San Jose — 22 39.9/m 365
Washington BMP 155 63 — 253
database

and operation. Considered for this study were costs associated with
construction, design and engineering, and maintenance and oper-
ation over a 20-vear life cycle. In general, the small amount of
mformation that was available indicates a wide variation in costs
in relation to site-specific characteristics, design configurations,
and other local conditions and constraints, such as socioeco-
nomics. G cost information was collated from the City of San Jose
(Bryan Apple, personal commumnication, 2014), San Francisco
Estuary Partnership (SFEP) (Josh Bradt, personal communication,
2014), and Puget Sound stormwater BMP cost database (Herrera
Environmental Consuliants 2013b) (Table 2). In the end, the cost
data from the City of San Jose were used to reflect local conditions.
A unit cost approach was used to calculate the total relative cost
associated with each GI scenario. Cost per unit surface area was
specified for each GI type based on the total cost and designed
surface area of each feature. The total relative cost of any GI
scenario was calculated as

x swrface arca of each Gl type) (1)

Constraints on G Locations

For each GI type, the number of possible sites was constrained by
the maximun pumber of feasible sites identified on the basis of
suitability criteria including physical consiraints and watershed
characteristics. The suitable sites for placement of GI were identi-
fied by the GreenPlan-IT site locator tool. The tool provided the
total area of feasible sites for each Gl type, and the nurber of fea-
sible sites was estimated as the area divided by the surface area of
each GL

Depending on the sizing criteria, the total area that can be
treated by GI within each subwatershed also imposed implicit
constraints on how many GI installations are possible within a sub-
watershed. After review of the GI design guidance manual (San
Mateo Countywide Water Pollution Prevention Program 2009) and
through discussion with local stormwalter experts, a sizing factor
{defined as the ratio between GI surface area and its drainage area)
for each Gl type was specified: 4% for bioretention and infilration
trench, and 50% for permeable pavement. During the optimization
process, the number of GI units were adjusted when their combined
treatment areas exceed the available area for reatment within each
sub-watershed.
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Cptirmization Problem Formulation

The objectives of the optimization problem were to (1) minimize
the total relative cost of GI implementation, and (2) maximize the
total PCB load reduction at the outlet of the focus area. The deci-
sion variables were defined as the number of fixed-size units of
the distributed 1 types. For each applicable GI type, the decision
variable ranged from zero to a maximum number of potential sites
that were identified by the GIS site locator tool. Mathematically, the
optimization problem can be expressed as

n

i ;
Minimize » cost{Gl;)

ey

Maximize PCBs load reduction

Subjection SN

max

where GI; = set of (I configuration decision variables associated
with location #; and Ny, = maximum pomber of feasible sites.

Total relative cost as caleulated from Eq. (1) for cach GI com-
bination was used 1o compare the results. The NSGA-II operational
parameters, including population size, number of generations, and
crossover and rmutation rates, define the search algorithm and
have great impact on optimization results. The final decision on
the parameters took into account the values used in Peb et al.
{20023, as well as the consideration for the optimization problem
complexity and model ron time. Several combinations of different
population size and number of generations were also tested to iden-
ify the optimal parameter values. In the end, the key NSGA-1I
parameters were set with nurnber of generations = 200, population
size = 100, crossover probability = 0.9, and mutation probability =
0.1, mostly consistent with the recommendations of Deb et al.
(2002).

Sensitivity Analysis

Previous studies (USEPA 201 {; Herrera Environmental Consultants
2013a) suggested that the optimization process and resulting
solutions are highly sensitive to (I cost and sizing criteria. Just
as the optimization results are driven by the specified optimization
objective, cost effectiveness is driven by the associated cost assump-
tions and modeled GI performance. Sensitivity testing of both cost
and sizing asspmptions were performed to explore the implications
of these (GI characteristics on optimization results.

Gi Cost Sensitivity

A G1 scenario with high-end cost estimate based on the regional
data was run to test the sensitivity of GI cost and examine the
uncertainty in the resulting cost estimate. In this scenario, the cost
for bioretention was based on the average of six projects in the
San Francisco Bay area, and the cosis for infiltration wench and
permeable pavement were provided by the City of San Jose for
projects with a more complex design. Table 3 lists the unit cost
specified for the sensitivity analysis scenario.

Table 3. Unit cost for each GI type for sensitivity analysis scenario

Gl feature Local cost ($/m?) High cost (3/m%)

Gl Bizing Criteria Sensitivity

The amount of watershed area drained to GI installations is another
key assumption that nfluenced the modeled performance of GI
praciices. For this study, a sizing factor of 4% of drainage area
was used for bioretention and infiltration trench, and 50% for per-
meable pavement. However, the methods allowing for selecting
and sizing GI installations to meet permit requirements vary in
complexity and can result in a wide variety of designs under site-
specific conditions. To test the sensitivity of the GI sizing criteria,
the sizing factors for bioretention and infiltration trench were in-
creased to 6% and 8%, respectively, while permeable pavement was
kept at 50%.

Results and Discussion

Lost-Effectiveness Curves

The optimization process outputs the optimal solutions along a
cost-effectiveness curve. The curve relates PCB removal efficiency
to various combinations of GI throughout the watershed and their
assoclated cost. Fig. 3 illustrates the optimal trade-off between im-
plementation cost and PCB load reduction. All individual solstions
are plotted together, with the optimum solutions forming the left
and uppermost boundaries of the search domain. Each point along
the cost-effectiveness curve represents a unigue combination of the
number of bioretention units, infilration trenches, and permeable
pavement sites across the study area, and can be analyzed in terms
of the magnitude of build-out throughout each subwatershed.
Fig. 3 shows a wide spread of GI solutions for PCB load reduc-
tions. At the same level of cost, the percentage removal could vary
as much as 30%, while for the same level of pollutant reduction
the difference in total relative cost could be well over $100 million
between an optimal solution and a nonoptimal solution. This
highlights the benefit of using an optimization approach to help
stormwater managers identify the most cost-effective solution for
achieving flow and water quality improvement goals within a lim-
ited budget. The slope of the optimal frontier in Fig. 3 represents
the marginal value of additional GI installations, and the decreasing
slope of the frontier indicates diminishing marginal returns associ-
ated with an increasing number of GI installations as reflected in
the increasing cost. For example, the corves suggests that a 40%
PCB removal can be achieved with abowt $100 million dollars,
but only 20% additional PCB removal can be expected for the next
$100-million-dollar investment. This makes sense given the hetero-
geneous nature of PCB sources and a relatively large variation in
PCB loads across this urban landscape ((Gilbreath and McKee
2015; McKee et al. 2017). After treating the most polluted areas,

100%
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Fig. 4. Runoff cost-effectiveness carve.

subsequent implementation of treatment measures will need (o be
placed 1 less polluted areas, and therefore the load available o
treat will be less, resulting in a gradual but decreasing efficiency
over time and an increasing cost per unit mass treated. The maxi-
mum reduction achievable appears to be around 70%, after which
the curve starts 1o level off and little reduction can be achieved with
additional investment. With the belp of this information, decision
makers can set realistic goals on how much PCB reduction can be
achieved and the level of imvestment required, as well as determine
at what point further investment on GI will become less desirable as
the marginal bepefit decreases.

Since PCB loads are primarily reduced through settling and
filration stormwater runoff, it is also of interest to examine the
trade-off curve between implementation cost and runoff volume
reduction as ancillary results of the optimization (Fig. 4). The trade-
off curve for runoff exhibits a relatively tight range of solutions due
to the comparatively homogeneous nature of runoff production
compared with PCB load in the study area. The model calibration
shows that spatial variability in runoff production is about threefold
in this highly urbanized watershed where subwatersheds have a
similar level of imperviousness. The maximum achievable ranoff
volume reductions at the outlet of the study area, given the objec-
tives and constraints associated with the study. was estimated to be
about 90% (Fig. 4). These solutions are optimized for PCB reduc-
tion and therefore not necessarily optimal for runoff reduction. If
runcff reduction were used as the optimmization objective, the result-
ing cost-effectiveness curve for runoff would be different and less
optimal for PCB reduction.

Gi Utitization and Spatial Distribution

The types of practices associated with each point along the cost-
effectivencss curve provides insight into the reasoning and order
of selecting individual practices. Three solutions, with 30%, 50%,
and 70% of PCB reduction (Fig. 3, three enlarged dots), were se-
lected from the PCB cost-effectiveness curve for further detailed
evaluation. Each point along the cost-effectiveness curve corre-
sponds 10 a unique GI combination. For a given solution, the se-
lection of GI can be (1) evaluated in terms of the magnitude of
build-out and percent utilization; and (2) analyzed spatially in terms
of GI selections throughout each subwatershed.

The percent utilization of each Gl type among the three types is
quantified for each selected solution (Fig. 5). At 30% load reduc-
tion, boretention is the most effective GI and accounts for 78% of
total G selected, while infiliration trench accounts for 14% and
permaeable pavement 8%. As the level of reduction increases,
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Fig. 5. Percentage of each GI type selected for three optimal PCB
load-reduction solutions.
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Fig. 6. Percentage of area treated by each Gl type for three optimal
solutions.

mfileration trench becomes more cost effective and its utilization
is increased from 14% at the 30% reduction scepario to 55% at the
70% reduction scenario. For all three reduction scemarios, per-
meable pavement appears 1o be the least cost effective and the
amount of utilization stays less than 10% due to its low treatment
ratio and small number of feasible sites associated with its large
surface area. Within the optimization process, the selection of each
Gl type is largely driven by its respective representation (Table 1)
and vait cost. Changing any of these will change how each GI type
will be wtilized for any given solutions.

The percent utilization of each GI type can also be viewed in
terms of area treated (Fig. 6). At 30% load reduction, nearly
90% of areas are proposed to be treated by bioretention, 8% by
infiltration trench, 4% by permeable pavement. As the level of load
reduction increases, the percent of area treated by infiltration trench
increases and bioretention decreases, and by the time load reduc-
tion reaches 70%, infiltration trench is selected to treat 40% of
available areas. For all three sceparios, bioretention i3 selected to
treat more than 50% of the available areas, making it the most cost-
effective GI among the three types. In contrast, permeable pave-
ment only treats 5% of areas, and therefore appears 1o be the least
cosi-effective GL

While these results seem logical and provide excellent guidance,
it is imporiant to emphasize here that this observation should be
mterpreted within the context of specific configurations for each
GI type as defined in this study. If any of these design criteria were
to change, a different set of guidance would emerge. Therefore, it is
important o work with managers and local stakeholders to work
through the ramifications of these decisions as part of the planning
process and try to match the model physics reasonably well with
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Gl Distribution For 30% PCB Reduction

Lower Watershed
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% PCB Yield (mg/ha)
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¥
A

Fig. 7. Number of Gls identified for each subwatershed. (Map data
from Esri, HERE, Del.orme, Mapmyindia, © OpenStreetMap contri-
butors, and the GIS user community; National Elevation Dataset; and
San Francisco Estuary Institute.)

the physics of the G1types that will eventually be retrofitied into the
urban landscape after the planning process is complete,

(1 utilization resulis can be mapped by subwatershed to gain
insight into the optimal spatial placement of these practices derived
umader the defined objective and constraints. Fig. 7 shows the num-
ber of Gls identified at each subwatershed for the 30% load-
reduction scenario. In general, the optimization process identified
more Gl needed at the areas with high PCB yield and runoff (darker
area), where GI could be most efficient. The total number of GI
locations identified are dependent on the unit size used for each
Gl type, and the optimal solutions will be different in G sumbers
and compositions if a different design for any GI 1s used.

The optimization results must be interpreted in the context
of specific problem formulation, assumptions, constraints, and
optimization goals upique to this case study. I one or more assump-
tions are changed, for example, the optimization target was de-
signed as reducing total runofl volume instead of PCB loads, the
optimization might have resulted 1n a completely different set of
solutions in terms of GI selection, distribution, and cost. Also, be-
caunse of the large variation and uncertainty associated with unit
Gl cost information, the total relative cost associated with various
reduction goals calculated from the unit cost do not necessarily re-
present the true cost of an optimum solution for the basin evaloated
and are not transferable to other basins. Rather, these costs should
be interpreted as a common basis to evaluate and compare the rel-
ative performance of different GI scenarios. Implementation costs
will likely be much lower than the modeling would predict because
Gl can be implemented as part of existing or enhanced capital im-
provement plans and transpottation projects, through baich design
and construction where large areas of the urban landscape are retro-
fitted at once, as a component of new development, and perhaps
through public—private partnerships.
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Fig. 8. Comparison of cost-effectiveness curves of sensitivity analysis.

Sensitivity Analysis Resulls

As expected, the sensitivity results suggest that assumptions made
with GI cost were highly influential on the optimization resulis.
Fig. 8 shows three versions of cost-effectiveness curve: the original
scenario, high-cost scenario, and new sizing scenario. Varying the
unit cost at the same level of reduction results in different relative
cosis and GI combinations and vice versa. For instance, at the
30% PCB reduction level, the total relative cost was estimated
to be around $80 million with the original unit cost, and increase
to $130 million with high cost. And the optimal combinations of GI
types and mumbers are also different. The difference in total imple-
mentation cost demonsirates the senstiivity of GI cost and suggests
that the range of probable assumptions could significantly increase
the calculated implementation cost in the study area. As such, re-
liable and accurate local cost information should be used to drive
the optimization process wherever possible. However, despite this
illustration and the importance of working with managers and
stakeholders closely as the modeling assumptions are developed,
given the planning nature of the tools presented here, it is important
to cormrunicate that it is not the total estimated cost that is impor-
tant but rather identifying the most cost-effective GI combinations
that minimize relative cost for maxinum benefits.

Similarly, with new sizing criteria, the cost is evidently higher at
all levels of PCB load reduction (Fig. §, dashed line). Since two GI
types are now designed to treat a smaller amount of impervious
arca, the number of GI installations required to reduce the same
amount of PCB loads will increase, which translates to higher cost.
And the cost difference between two scenarios generally grows
wider as the level of load reduction increases, suggesting the higher
the load reduction, the more GI will be required under new sizing
criteria.

Conclusions

An optimization framework that couples an optimization approach
(NSGA-IF) with a watershed model (SWMMS5) was developed to
ideniify optimal GI solutions for reducing PCB loads at the water-
shed level. Three GI types with specific designs and unit costs were
used to simulate potential PCB load reductions associated with
various combinations of GI implementation. The result of the op-
timization procedures described was a cost-effectiveness curve of
optimal management cost for various levels of PCB reductions. A
wide spread between the optimal frontier and intermediate solu-
tions generated during the optimization process as well as dimin-
ishing marginal retums associated with an increasing number of GI
installations highlight the benefit of using an optimization approach
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to help to identify the most cost-effective solution for achieving a
certain reduction goal or within a limited budget. Such an analysis
provides stormwater managers with a wide range of near-optimal
retrofit and buildout scenarios that take into consideration environ-
mental benefits and economic costs of various Gl alternatives and
could be used to inform policy decisions regarding future storm-
water management investiments.

Sensitivity analysis of both GI costs and sizing criteria suggest
that assumptions made regarding those parameters were influential
on the optimization results. Therefore, wherever the approach is
applied, reliable local cost information and site-specific design
should be used to ensure a successful and meaningful application,
and sensitivity analysis and evaluation of cost control measures or
econonies of scale are recommended.

The developed integrative methodology provides the decision
makers with important information regarding trade-offs among
competing objectives. The watershed approach is particularly ad-
vaniageous in that it helps develop more comprehensive GI imple-
mentation plans that take into account the physical interaction and
dynamic processes occurring within a watershed. The methodology
can be used to comply with National Pollutant Discharge Elimina-
tion System (NPDES) stormwater permit requirements as well as
address load reduction needs identified in TMDLs.

Finally, it is crucial to interpret the optimization results within
the context of each specific application, including problem for-
nulation, model assumptions, and sensitivity of GI parameters.
Furthermore, since the model baseline is the foundation for
comparative assessinent of various I scenarios, establishing a
representative baseline condition with a high level of confidence
is critical to ensure the optimization results are meaningful and
becomes especially important when cost-benefit optimization of
future management objectives is a primary focus of the modeling
effort.
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